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Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, and previous studies have shown its association with accelerated aging. 
In this study, we hypothesized that single nucleotide polymorphisms (SNPs) that contributed to aging acceleration are also associated with 
the progression from mild cognitive impairment (MCI) to AD. By applying genetic correlation analysis and single-locus survival analysis, we 
investigated the associations between intrinsic- and extrinsic-epigenetic-age-acceleration (IEAA and EEAA) related SNPs and the progression 
time from MCI to AD dementia using the data of 767 MCI participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study 
and 1 373 MCI patients from the National Alzheimer’s Coordinating Center (NACC) study. Genetic correlations were found between IEAA/
EEAA and AD (positive for IEAA-AD and negative for EEAA-AD). We revealed that 70 IEAA and 81 EEAA SNPs had associations with the 
progression time from MCI to AD with Bayesian false-discovery probability ≤ 0.8 in the ADNI study, with 22 IEAA SNPs and 16 EEAA SNPs 
being replicated in the NACC study (p < .05). Polygenic risk score (PRS) analysis showed that EEAA PRS but not IEAA PRS was associated 
with AD progression and the trend of decreasing fusiform gyrus volume in 2 data sets. Risk models incorporating both EAA PRSs did not 
show any significant improvement in predictive accuracy. Our results revealed multiple genetic variants with pleiotropic effects on both EAA 
and AD, which suggested shared genetic architecture between epigenetic age acceleration and AD progression.
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Aging affects the functions of all organs of the human body and is one of 
the leading risk factors for many diseases, including Alzheimer’s disease 
(AD) (1,2). Previous studies have revealed the detrimental relationship 
between accelerated brain aging and AD early-stage neurodegeneration 
(3,4). Several approaches have been reported to estimate brain age ac-
celeration by using epigenetic data (DNAm age) of brain samples and 

imaging data (4–8). Epigenetic age acceleration (EAA), which is re-
ferred to as the difference between the estimated age by methylation 
data and the chronological age, is an effective biomarker for the predic-
tion of multiple aging-related phenotypes, including telomere length, 
cancer, obesity, metabolic syndrome, post-traumatic stress disorder 
(PTSD), morbidity, and mortality (5,9–13).
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There are 2 commonly used EAA measures: Horvath EAA and 
Hannum EAA (14,15). Horvath EAA is the predicted value of age 
based on DNA methylation levels of 353 CpG sites reported pre-
viously and is conserved across cell types (5). Intrinsic-epigenetic-
age-acceleration (IEAA) is a derivative variation of Horvath EAA 
with adjustment for white blood cell composition and can be used as 
a biomarker of cell-intrinsic aging (16). In contrast, Hannum EAA 
is based on the DNA methylation levels at the 71 CpGs identified 
by Hannum et al. (17), and its variation called extrinsic-epigenetic-
age-acceleration (EEAA) as it can track age-related changes in blood 
cells, which are supposed to be correlated with lifestyle and health-
span-related factors (17). Several AD risk factors, including body 
mass index (BMI), cholesterol ratios, socioeconomic status, high 
blood pressure, and smoking behavior, were reported to modulate 
both EAA measures (18). Age-related methylation changes are also 
observed in AD susceptibility loci and may contribute to late-onset 
AD pathology (19). However, no significant association was found 
between AD genetic factors (AD family history, polygenetic risk 
score, and APOE E4 copies) and EAA (18). These results suggested 
that EAA may mainly mediate the effects of nongenetic factors in-
volved in AD (20). In 2 recent studies, the Horvath EAA and EEAA 
were reported to be associated with a faster rate of cognitive decline 
in men with ages greater than 50 years old (21,22). However, the as-
sociation between EAA and dementia is still in controversy. One pre-
vious study with 52 individuals with baseline aged between 55 and 
65 reported a significant positive association between methylation 
age and dementia risk (23), while a negative correlation was found 
between 4 types of EAA and dementia risk in another population 
study with 488 participants aged above 79 (24). One recent study 
also showed that IEAA was not associated with cognitive impair-
ment overall but only among women who developed coronary heart 
disease (25). Such inconsistency might be due to small sample size of 
these studies or the age difference between populations.

Single nucleotide polymorphisms (SNPs) have been proposed 
to test the causal relationship between complex traits, and multiple 
genome-wide association studies (GWASs) have been performed 
to identify genetic variants associated with aging-related changes 
in brain functions and structures as well as methylation patterns 
(7,8,14,26–29). Gibson et al. recently conducted a large scale GWAS 
study on EAA measured in peripheral blood or saliva of 13 493 un-
related individuals of European ancestry, and reported ten genetic 
variants associated with Horvath-based EAA, and 1 variant associ-
ated with the Hannum-based EAA (14). However, currently, there 
is no study to investigate the genetic correlation between EAA and 
AD progression, as well as the shared genetic variants of them. In 
this study, we hypothesized that EAA-related genetic variants would 
affect the progression from MCI to AD. To test this hypothesis, we 
investigated the genetic correlation between EAA and AD risk, as 
well as the associations between EAA-related SNPs and the progres-
sion time from mild cognitive impairment (MCI) to AD dementia 
by using the available GWAS data and clinical data from the AD 
Neuroimaging Initiative (ADNI), and replicating our findings using 
data from the National Alzheimer’s Coordinating Center (NACC).

Population and Methods

Participants
Patients diagnosed with MCI at baseline or during follow-up were 
selected from the ADNI study (http://adni.loni.ucla.edu) and NACC, 
https://naccdata.org, of which the former was used as the discovery 

data set and the latter as a replication data set (30,31). In ADNI, 916 
participants were diagnosed with MCI at baseline or any follow-
ups. After merging the genotype data and clinical data, 767 parti-
cipants remained for further analysis, and 294 participants were 
diagnosed with dementia with AD as the etiologic diagnosis during 
the follow-up period. In NACC, the genotyping data and clinical 
data were available for 1 373 MCI patients, of which 864 partici-
pants were diagnosed with AD etiology causes of dementia during 
the follow-up period.

The ADNI and NACC studies were approved by local institu-
tional review boards, and all participants or participant’s guardians 
provided written informed consent. Additional information about 
ADNI and NACC studies are available at http://www.adni-info.
org and https://www.alz.washington.edu/WEB/study_pop.html, 
respectively.

Genotyping and Imputation
The GWAS data from the ADNI cohort were genotyped with 
the platforms of Illumina Human610-Quad, Illumina Human 
OmniExpress and Illumina Omni 2.5M on 1 674 MCI participants 
from ADNI 1, GO, and ADNI 2 phases, respectively (Illumina, Inc., 
San Diego, CA). We used SHAPEIT for phasing and performed im-
putation with minimac4 on the Michigan imputation server (https://
imputationserver.sph.umich.edu) with the HRC reference panel 
(Version r1.1 2016) consisting of 64 940 haplotypes of predomin-
antly European ancestry (32). For imputation, a set of high-quality 
SNPs were used: MAF > 0.01; call rate > 95%, Hardy–Weinberg 
equilibrium test p > 10−6; allele frequency difference ≤ 0.20 between 
the sample data and the reference panel. For the NACC study, we 
downloaded the GWAS data for the 10 256 participants in NACC 
AD Centers 1–7, of which the genotyping was performed with the 
platforms of Human660W-Quad_v1_A, HumanOmniExpress-
12v1_A/H, and humanomniexpressexome-8v1-2_a, respectively 
(https://www.alz.washington.edu/ADGC/GENOtype.html) (31). We 
then conducted genotyping quality control and imputation with the 
same procedure as used with the ADNI genotype data.

EAA/AD-Related SNP Selection and Association 
Analysis
For SNP-heritability analysis, we used the summary statistics of the 
IGAP AD GWAS (33) (https://www.niagads.org/datasets/ng00075) 
and 1 methylations aging acceleration GWAS-meta study (https://
datashare.is.ed.ac.uk/handle/10283/3427) (14). For association ana-
lysis, we selected 275 716 and 277 045 SNPs associated with IEAA 
and EEAA, respectively, with p < .05, minor allele frequency ≥ 0.05, 
and consistent directions between the 2 studies in the published 
GWAS-meta study. We then extracted the imputation data of these 
SNPs for the ADNI data set and performed single-locus analysis for 
the association between these SNPs and AD progression. Bayesian 
false-discovery probability (BFDP) was used to control for multiple 
testing. SNPs with BFDP < 0.8 were chosen to be replicated in the 
NACC data set.

Statistical Methods and In Silico Functional 
Annotations
SNP-heritability (defined as the proportion of phenotypic variance 
explained by SNPs), heritability enrichments, and genetic correl-
ations of IEAA, EEAA, and AD risk were estimated by using the 
aforementioned GWAS summary statistics with the LDAK model 
(http://dougspeed.com/) (34). The association between single SNPs 
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and the progression from MCI to AD was tested by using Cox pro-
portional hazards regression with adjustment for age at baseline, 
sex, years of education, race, top 3 significant principal components 
(PCs) from the GWAS data, and the number of allele copies of APOE 
E2 and E4. The progression time from MCI to AD (in years) was cal-
culated from baseline for patients with MCI at baseline or from the 
date of the first diagnosis of MCI to AD conversion. The endpoint 
event was the occurrence of AD. Censoring was based on the date 
of last visit or date of death. We selected SNPs with independent ef-
fects by applying linkage disequilibrium (LD) clumping (paired-wise 
r2 < 0.10) and survival LASSO regression (regularized Cox regres-
sion) for those identified SNPs in the single locus analysis. We then 
used those independent SNPs and their corresponding effect sizes on 
EAA from previous GWAS to construct IEAA-PRS and EEAA-PRS 
with PRSICE-2 (https://www.prsice.info/). The standardized z-score 
of PRS (centering by mean and scaling by standard deviation [SD]) 
was used in the following analysis (35).

We performed log transformations for the CSF biomarkers 
(ABETA, Tau, and PTau). The volumes of 5 regions (ie, Ventricles, 
Hippocampus [HIPP], Entorhinal, Fusiform gyrus [FUS], and Middle 
temporal gyrus [MidTemp]) were represented as the percentage rela-
tive to the intracerebral volume. The correlations between PRSs and 
the longitudinal changes of these CSF and imaging biomarkers were 
investigated with a linear mixed model by including a random inter-
cept and a random slope of time with adjustment for age, baseline, 
sex, years of education, race, top significant PCs, and the allele copies 
of APOE E2 and E4. In these analyses, the survival and nlme pack-
ages in R were used. All analyses were conducted with R (version 
3.5.1) if not mentioned otherwise.

To elucidate the possible biological functions of SNPs in the 
final identified regions, we applied the online tool HaploReg v4.1 
(https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php), 
based on the Encyclopedia of DNA elements (ENCODE) data, to 
perform functional annotation. We also performed in silico methy-
lation quantitative trait loci (mQTL) analysis by using data from 
the mQTL database (http://www.mqtldb.org/cgi-bin/search.cgi), 
which includes the mQTL results at 5 different life stages in human 
blood (36), and expression quantitative trait loci (eQTL) with the 
data from BRAINEAC (http://www.braineac.org/), which includes 
the eQTL results of 10 different tissues (n = 130) from UK Brain 
Expression Consortium (UKBEC)(37).

For comparison, we also downloaded the European-ancestries 
meta-analysis GWAS summary statistics of 2 other epigenetic clocks 
(ie, DNAm PhenoAge and GrimAge from https://datashare.ed.ac.
uk/handle/10283/3645) and tested the associations of their related 
SNPs (with p < .05 in the original GWAS results) with AD progres-
sion (38–40).

Results

Characteristics of the Study Populations
The workflow of the present study is depicted in Figure 1. 
Distributions of demographic and clinical variables are presented 
in Supplementary Table 1. In the univariate analysis, we found that 
age, ABETA, total tau, and ptau levels at baseline, APOE E2, and E4 
alleles were all significantly associated with the time to progression 
to AD among MCI patients from the ADNI cohort (Supplementary 
Table 1, p < .05). The distributions of characteristics of the NACC 
data set (ie, age, sex, education years, race, and APOE E2/3/4 al-
leles) can be found in Supplementary Table 2. We found significant 

associations between race, APOE genotypes and the progression 
time from MCI to AD. In the ADNI data set, about 91.3% parti-
cipants are non-Hispanic Whites, and in the NACC data set, there 
are about 98% non-Hispanic Whites. It should be noted that the 
CSF biomarkers (ie, ABETA and tau/ptau) are unavailable from the 
NACC cohorts.

SNP-Heritability and Genetic Correlation of EAA 
and AD
To test if there exist genetic variants with pleiotropic effects on 
both EAA and AD, we first performed SNP-heritability and gen-
etic correlation analysis by using their GWAS summary statistics 
after excluding loci with heritability greater than 1%. We found 
the estimates of SNP-heritability of AD, IEAA, and EEAA were 
16% (SD = 1.4%), 26.5% (SD = 7.4%), and 26.3% (SD = 7.4%; 
Supplementary Table 3), respectively. Genetic correlation analysis 
showed that IEAA and AD are positively correlated with an estimate 
of 0.508 (SD = 0.343); while EEAA and AD had a negatively genetic 
correlation with an estimate of −0.179 (SD  =  0.357). Enrichment 
heritability analysis showed that SNPs located in the 5 functional 
categories (ie, H3K27ac_Hnisz and H3K4me1_Trynka for ac-
tive enhancers, Recomb_Rate_10kb for recombination hotspots, 
Nucleotide_Diversity_10kb for nucleotide diversity influenced by 
positive and negative selection, and CpG_Content_50kb for CpG 
sites) contributed the most heritability (≥10%) of IEAA, EEAA, and 
AD (Supplementary Figure 1). We also presented the results of other 
8 enriched functional categories (ie, FetalDHS_Trynka [fetal DNase 
I hypersensitivity sites from the Trynka group], H3K27ac_PGC2 [his-
tone H3K27ac sites from The Psychiatric Genomics Consortium], 
H3K4me3_Trynka [histone H3K4me3 sites from the Trynka group], 
Intron_UCSC [intron regions from the UCSC database], Repressed_
Hoffman [transcription repressed regions from Hoffman et al. (41)], 
SuperEnhancer_Hnisz [super-enhancers reported by Hnisz et  al. 
(42)], and TFBS_ENCODE [transcription factor binding sites from 
ENCODE]) with estimated heritability (≥10%) on either IEAA, 
EEAA, or AD.

By using the R package “TwoSampleMR,” we performed 
Mendelian randomization analysis to test the causal associations 
between EAA and AD by using 1002 and 1046 independent SNPs 
(pair-wise r2 < 0.1) associated with IEAA and EEAA with p ≤ .05. 
The results of 3 methods (ie, MR Egger, weighted median, and 

Figure 1. Study workflow. IEAA  =  intrinsic-epigenetic-age-acceleration; 
EEAA  =  extrinsic-epigenetic-age-acceleration; ADNI  =  the Alzheimer’s 
Disease Neuroimaging Initiative study; NACC  =  the National Alzheimer’s 
Coordinating Center studies; MAF = minor allele frequency; BFDP = Bayesian 
false-discovery probability; eQTL  =  expression quantitative trait locus; 
GTEx = The Genotype-Tissue Expression (GTEx) project.
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inverse variance weighted) were shown in Supplementary Table 4. 
It is interesting that the estimators with the methods of MR Egger 
and weighted median showed that IEAA has a positive effect while 
EEAA has a negative effect on the risk of late-onset AD. Such differ-
ence was consistent with the results of genetic correlation analysis 
with LDAK heritability model. However, all effects were minor and 
nonsignificant.

Survival Analysis of EAA-Related SNPs and the 
Progression Time of MCI to AD
We investigated the association between EAA-related SNPs and the 
progression time from MCI to AD by applying the Cox proportional 
hazard model. In the ADNI data set, we found 16 967 IEAA SNPs 
with p ≤ .05 and 8 289 of them with BFDP ≤ 0.8, and 14 531 EEAA 
SNPs with p ≤ .05 and 6 182 of them with BFDP ≤ 0.8. No SNP  
survived false discovery rate (FDR) correction (FDR ≤ 0.2). The 
overall association results of IEAA SNPs and EEAA SNPs were shown 
in Supplementary Figure 2A and B. We also performed an independent 
replication by using the NACC data set to replicate the associations 
identified in the ADNI data set. With BFDP < 0.8 for multiple testing 
corrections, we found that 70 IEAA SNPs, and 81 EEAA SNPs were 
replicated in the NACC data set (Supplementary Tables 4 and 5). We 
also extracted the GWAS data of 319 740 and 325 325 SNPs asso-
ciated with 2 other epigenetic clocks (PhenoAge and GrimAge, re-
spectively) with p < .05, and investigated their associations with AD 
progression time. We found 138 PhenoAge SNPs and 37 GrimAge 
SNPs passing multiple testing corrections (BFDP < 0.8) in both the 
ADNI and NACC data sets (Supplementary Tables 6 and 7).

By applying LD clumping and survival lasso regression analysis 
(Supplementary Figure 3A and B), we selected 22 IEAA SNPs and 
16 EEAA SNPs with independent effects on AD progression. Two 
SNPs (ie, rs13172823 and rs79608085) overlapped between the 2 
SNP sets. The association results of each one of those SNPs in both 
ADNI and NACC data sets are shown in Table 1. We also presented 
the independent effects of those SNPs with the adjustment for other 
SNPs in multivariable regression model (Supplementary Tables 8 
and 9).

Survival Analysis of PRS and the Progression Time 
From MCI to AD
To test the combined effect of these identified SNPs (22 IEAA SNPs 
and 16 EEAA SNPs), we constructed IEAA PRS and EEAA PRS 
by using SNPs with independent effects, and tested their associ-
ations with the progression from MCI to AD. The effect sizes of the 
SNPs in the PRS were from the previous EAA GWAS and shown in 
Supplementary Table 10. As presented in Table 2, we found IEAA 
aging PRS contributed to a shorter progression time of AD from 
MCI in the ADNI data set (p = .048). However, this association was 
not replicated in the NACC data set (p = .699). The association be-
tween EEAA PRS and shorter AD progression time presented con-
sistent effects in both the ADNI and NACC data set (p = .036 and 
.003, respectively). We then performed subgroup analysis by sex 
and APOE E4 status and found the EEAA PRS was associated with 
AD progression time in both subgroups of males and those without 
APOE E4 alleles in the ADNI and NACC data sets (Supplementary 
Table 11).

We also calculated the PhenoAge and GrimAge PRSs by using 
the identified SNPs in this study and their effect sizes from previous 
GWAS. We found only the PhenoAge PRS showed a significant as-
sociation with AD progression time in the ADNI data set (p = .002; 

Supplementary Table 12). However, this association cannot be rep-
licated in the NACC data set. No significance was found for the 
GrimAge PRS in both the ADNI and NACC data sets.

We evaluated the predictive accuracy of different models by using 
the Harrell’s C-statistic (Table 3). As shown, the model including 
both number of APOE E2 and E4 alleles had a significantly increased 
C-statistic compared with the model that included only demographic 
variables in the ADNI data (0.636 vs 0.555, p = 5.72E-07). After 
adding IEAA and EEAA PRSs to the APOE model, there was a slight 
increase in the Harrell’s C-statistic (0.641 and 0.639, respectively). 
However, models incorporating both EAA PRSs did not show any 
significant improvement in the predictive accuracy (p  =  .216 and 
.409 for the C-statistic comparison between IEAA model and APOE 
model, EEAA model and APOE model, respectively). Similar results 
were observed in the NACC data set.

We further tested the correlation between EAA PRS and the lon-
gitudinal changes of cognitive abilities (ie, MMSE, MOCA, CDRSB, 
FAQ, and ADAS11/13/Q4), and with biomarkers from CSF and im-
aging. As shown in Supplementary Table 13, we found significant 
correlations between IEAA PRS and the ABETA level in CSF, EEAA 
PRS, and the volume changes of the FUS (p  =  .028 and .032, re-
spectively). However, no significant association was found for other 
cognitive phenotypes and biomarkers.

We also investigated the associations of SNPs from IEAA and 
EEAA with the cognitive phenotype (represented by CDR-SB), and 
found that 41 IEAA SNPs (Supplementary Table 14) and 163 EEAA 
SNPs (Supplementary Table 15) showed consistent correlations in 
both the ADNI and NACC studies.

Functional Annotation of the Identified SNPs
Functional annotations from HaploReg for these identified SNPs 
(ie, 22 IEAA SNPs and 16 EEAA SNPs) with independent effects 
are summarized in Supplementary Table 16. Of the 38 SNPs, there 
were 33 SNPs with potential effects on the promoter or enhancer 
activities, changing the binding activities of transcription factors, or 
with significant eQTL evidence. We also retrieved the cis meQTL 
results of blood samples from the mQTL database, and the eQTL 
results with multiple brain tissues from the BRAINEAC database 
for these SNPs. We found 5 EEAA SNPs (ie, rs7011999, rs4293193, 
rs112837743, rs2590959, and rs45473297) had a significant asso-
ciation with the methylation changes of 9 genes in blood tissues col-
lected in middle age (Supplementary Table 17). Except for 2 genes, 
CEBA2T3 and SPAG4, decreased methylation levels of the other 
7 genes (ie, ERICH1-AS1, FAM66C, CDT1, SCAND1, CPNE1, 
RBM12, and APP) were observed to be correlated with the variant 
allele of these SNPs. The eQTL results showed that 11 SNPs had sig-
nificant correlations with mRNA expression levels across 10 normal 
brain tissues (Supplementary Table 18). For example, 3 SNPs (ie, 
rs4972565, rs62193947, and rs2590959) showed a significant cor-
relation with the mRNA expression of CDCA7, MPP4/ NOP58, 
and ERGIC3/CPNE1/RBM12 in the tissues of the HIPP, thalamus 
(THAL), temporal cortex (TCTX), and intralobular white matter 
(WHMT), respectively.

Discussion

In this study, we tested the genetic correlation between EAA and 
the progression from MCI to AD. By using the GWAS summary 
statistics of AD and EAA, we found genetic variants in 5 functional 
categories contributed to the heritability of both IEAA, EEAA, and 
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AD. In further survival analysis, we identified 22 IEAA SNPs and 16 
EEAA SNPs that had significant independent effects on the progres-
sion time from MCI to AD in both the ADNI cohort and the NACC 
study after adjusting for demographic and clinical variables. Further 
PRS analysis revealed a combined effect of those SNPs on AD pro-
gression, longitudinal changes of ABETA in CSF, and the volume 
changes of the FUS. Functional annotation showed multiple SNPs 
with potential functions is regulation of mRNA expression. Our 
findings revealed multiple genetic variants with pleiotropic effects 
on EAA and AD, and suggested shared genetic architecture between 
these traits.

Previous studies have reported links between age acceleration and 
AD pathogenesis (ie, plaque, amyloid load, and cognitive decline) as 
well as AD-related environmental risk factors (ie, BMI, cholesterol 
level, blood pressure, and smoking behavior) (6,18). However, the 
underlying biological mechanisms remained unclear. In this study, 

we found the genetic correlations with AD risk are positive for IEAA 
and negative for EEAA. This finding reflects the 2 types of EAAs 
measure different aspects of aging. IEAA is a measure of biological 
aging that is independent of proportions of naive or senescent cyto-
toxic T cells, whereas EEAA captures the aging-related functional 
decline of the immune system (16). Previous studies have reported 
that the peripheral and central immune systems are dysregulated 
in AD (43). However, currently, there is no agreed-upon immune 
marker profile in the periphery for the severity of AD. This is partly 
due to the inconsistent evidence suggesting that some peripheral in-
flammatory markers peak in the early symptomatic stages of AD and 
decline in later stages.

In this study, we also identified a number of SNPs with poten-
tial functions associated with both EAA and the progression from 
MCI to AD. Of them, 5 EEAA SNPs also showed significant asso-
ciations with the methylation levels of corresponding genes. One 
SNP rs45473297 is located in the second intron of a well-known 
AD-related gene―amyloid precursor protein (APP). The later en-
codes the amyloid-β precursor protein, which can be cleaved into 
amyloid β (Aβ) peptide, a major component of amyloid plaques (44). 
The aggregation of the Aβ peptide in the brain’s parenchyma is the 
key event of AD pathology (44). One study had revealed abnormal 
CpG methylation and increased expression of the APP gene in AD 
brains (45). Tohgi et al. reported that hypo-methylation of the pro-
moter region of APP might result in Aβ deposition in the cerebral 
cortex of the human brain (46), although this was not validated in an-
other study with 6 familial AD patients (47). In this study, we found 
the variant allele A of SNP rs45473297 was associated with late-
onset time of AD. In addition, the variant allele was also correlated 
with an increased methylation level of APP (probe ID: cg14414154) 
in the AD prefrontal cortex (http://mostafavilab.stat.ubc.ca/xqtl/
snp_query/) and decreased mRNA level in brain substantia nigra 
and spinal cord in the GTEx database (https://www.gtexportal.org/
home/snp/rs45473297). Such findings were consistent with the pre-
viously reported functions of APP on AD development. Significant 
eQTL results of this SNP were also found in several other brain 
tissues (ie, cerebellar cortex, substantia nigra, and THAL) with the 
UK Biobank data (http://www.braineac.org/). These results provided 
biological support for our association findings, which implied that 
the variant allele of this SNP may slow the progression from MCI 
to AD by altering the methylation and expression levels of APP. It 
should be noted that this SNP presented opposite effects in the blood 
cells, in which the variant allele A  was correlated with decreased 
methylation level (probe ID: cg01286133) and increased mRNA ex-
pression level. Such discrepancy may be due to tissue-specificity of 
gene expression and will need to be investigated by future functional 
studies with large sample size.

We also found 1 EEAA SNP rs112837743, had a significant asso-
ciation with reduced time of AD progression and decreased methy-
lation level of CDT1. CDT1 is the DNA replication licensing gene, 
and the Cdt1 protein is a key factor in genome stability by linking 
cell cycle progression to DNA damage response (48). In response to 
DNA damage, Cdt1 accumulates to the sites of damage and is sub-
sequently degraded, which is necessary to ensure proper cell cycle 
regulation, and involves in the regulation of AD pathogenesis medi-
ated by CDT2 (49).

Another EEAA SNP, rs147449969, is located in ALDH1A2, 
a member of the aldehyde dehydrogenase (ALDH) super family. 
ALDH1A1/2/3 plays an important role in the regulation of  
retinoic acid signaling by catalyzing the oxidation of retinal to  
retinoic acid (50). Dysregulation of retinoic acid results in oxidative 

Table 2. Association Between PRSs and the Progression of MCI to 
AD in Both ADNI and NACC Data Set

 ADNI   NACC   

Variable beta* se* p* beta* se* p*

IEAA-PRS 0.123 0.062 .048 0.013 0.034 .699
EEAA-PRS 0.134 0.064 .036 0.11 0.037 .003

Notes: PRS  =  polygenic risk score; MCI  =  mild cognitive impairment; 
AD  =  Alzheimer’s disease; IEAA  =  intrinsic-epigenetic-age-acceleration; 
EEAA = extrinsic-epigenetic-age-acceleration; ADNI = the Alzheimer’s Disease 
Neuroimaging Initiative study; NACC = the National Alzheimer’s Coordinat-
ing Center studies.

*Adjusted for age, sex, education, race, the copy numbers of APOE E2 and 
E4, and top significant principal components.

Table 3. Performance Evaluation of Models Without/With AD PRS 
Constructed With the Identified SNPs

Model 

IEAA PRS  

Harrell’s C (95% CI) p

ADNI data set
Demographic model* 0.555 (0.521-0.590)  
APOE model† 0.636 (0.600-0.671) 5.72E-07‖
IEAA-PRS model‡ 0.641 (0.606-0.676) 0.216¶

EEAA-PRS model§ 0.639 (0.604-0.675) 0.409¶

NACC
Demographic model* 0.524 (0.502 - 0.546)  
APOE model† 0.575 (0.554-0.597) 3.52E-04‖
IEAA-PRS model‡ 0.575 (0.553-0.596) 0.435¶

EEAA-PRS model§ 0.578 (0.557-0.600) 0.519¶

Notes: AD  =  Alzheimer’s disease; PRS  =  polygenic risk score; 
IEAA  =  intrinsic-epigenetic-age-acceleration; EEAA  =  extrinsic-epigenetic-
age-acceleration; ADNI  =  the Alzheimer’s Disease Neuroimaging Initia-
tive study; NACC =  the National Alzheimer’s Coordinating Center studies; 
CI = confidence interval.

*Demographic model including age, sex, education, and race.
†APOE model including age, sex, education, race, the copy numbers of 

APOE E2, and E4.
‡Genetic model including age, sex, education, race, the copy numbers of 

APOE E2/E4, and IEAA-PRS.
§Genetic model including age, sex, education, race, the copy numbers of 

APOE E2/E4, and EEAA-PRS.
‖Results of APOE model versus Demographic model.
¶Results of PRS model versus APOE model.
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stress, neuroinflammation, and neurodegeneration leading to AD 
(51). In addition, we also found that the variant allele of 1 IEAA 
SNP rs62193947 is associated with decreased risk of AD progres-
sion. This SNP also had a significant correlation with the mRNA ex-
pression of multiple genes, that is, BMPR2, CASP8, MPP4, NOP58, 
SNORD11, STRADB, and WDR12. Of them, CASP8 mediates ex-
trinsic apoptosis and suppresses necroptosis involving programmed 
cell death, which is a major contributor to the AD neurodegenerative 
process (52–54). These shared genes and related pathways may con-
tribute to the underlying mechanisms of AD progression and brain 
aging acceleration.

The FUS of the brain plays an important role in facial recognition 
(55). In AD, amyloid plaques and loss of synapses often co-occur in 
the FUS and within the ventral visual network regions (56). FUS is 
believed to decrease in size with increasing age. However, the correl-
ation between aging and the volume changes of the FUS are incon-
sistent in published studies. Two studies reported significant negative 
correlations between age and volume changes of FUS, indicating 
volume decreases over time (57,58), while another study did not 
find such correlation in both healthy individuals and in patients with 
chronic schizophrenia (59). In this study, we found EEAA PRS had 
a significant association with the decreased volume of FUS, which 
provided indirect evidence for the correlation between aging and the 
volume change of the FUS.

There are several limitations of this study. First, although we 
have revealed significant associations between EAA-related SNPs 
and AD progression, and provided in silico functional evidence 
for those identified SNPs, the underlying molecular and cellular 
mechanisms are still unclear and need to be investigated in future 
functional studies. Second, the results of this study may not be gen-
eralized to other populations because they were mainly based on 
the data from European populations, and LD structure may differ 
by ancestry. However, future studies are warranted about the role 
of EAA SNPs on AD progression in individuals from diverse an-
cestries. Third, only a small proportion of EAA-related SNPs were 
found to be associated with the progression of AD from MCI, and 
a PRS based on these SNP did not show substantial contributions 
in the AD prediction model integrated with demographic variables 
and APOE status. Such limitation may be due to that IEAA and 
EEAA only have relatively small effect sizes on age-related out-
comes. Levine et al. and Lu et al. reported 2 other measures of EAA 
(ie, DNAm PhenoAge and AgeAccelGrim) with strong associations 
with age-related conditions (39,40). These 2 types of EAA may pro-
vide a more accurate prediction of dementia than IEAA and EEAA 
as the former integrates additional information from plasma bio-
markers and smoking. In this study, we investigated the association 
of genetic variants correlated with the 2 types of EAA with AD 
progression time from MCI and identified multiple genetic variants 
in the single locus analysis. However, no significance was found for 
the associations of both PRSs and AD progression. Such results sug-
gested that these identified SNPs do not contribute substantially to 
the effect of these epigenetic aging on AD progression. In the future, 
more genetic variants with causal effects on EAA may be identified 
with the application of different statistical learning methods and 
used for EAA PRS calculation to improve the performance of AD 
risk prediction model. By using a 2-phase study design, we revealed 
that EEAA PRS but not IEAA PRS was associated with AD pro-
gression. Our results are consistent with the findings of previous 
studies using epigenetic data (22,25) and provide additional evi-
dence for the correlation of EEAA markers and AD progression in 
MCI patients.

In summary, in the present study, we identified a genetic correl-
ation between IEAA, EEAA, and the progression time from MCI 
to AD. These findings support shared genetic susceptibility between 
epigenetic age acceleration and AD progression. Future replication 
of these findings is warranted, and additional functional studies are 
necessary to reveal the biological framework underlying the ob-
served associations.
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